Блуждающие токи в водопроводных трубах как устранить, что это такое, причина возникновения

Блуждающие токи в трубах водопровода: как убрать проблематику

Как показывают исследования, ускоренное разрушение коммуникаций под землей из металла выполняется по причине появления электрохимической коррозийности. Ее основой считается целенаправленное перемещение заряженных частиц, являющихся блуждающими токами. Данная ситуация указывает на то, что чтобы обеспечить сохранность конструкций из металла нужно разобраться, как убрать блуждающие токи под землёй в трубах для водообеспечения.

Обозначение понятия

Блуждающие токи – это заряженные электрочастицы с конкретной траекторией движения, появляющиеся в земля, являющейся проводником. Термин блуждающие появился в виду того, что невозможно предугадать локализацию частиц и начало появления процесса. Воздействие блуждающих электрочастиц очень плохо проявляется на железных изделиях, присутствующих над землёй и под ней.

Такие же процессы появляются из-за растущего количества электрифицированных объектов, являющихся основой современных стран. А так как почва проводник для электричества, выполняется взаимное действие между элементами.

Появляются блуждающие частицы сродни электрическим, для взаимного действия которых требуется сравнение разности потенциалов в 2-х произвольных точках, исключительно для блуждающего варианта проводник – это земля. В результате находящийся железный материал вблизи процесса рушиться быстрее из-за коррозии.

Процесс формирования

Основой для появления блуждающих токов служит бесчисленное множество оборудования, работающего от электрического заряда, в результате возможными источниками являются такие элементы:

  • наличие ЗУ в подобных объектах как подстанции, ВЛ с нулевым проводником, распределители;
  • появление активности, в конечном итоге разрушения слоя изоляции проводов, несущих ток в кабелях и ВЛ сетях, где нейтраль изолирована;
  • присутствие связующего инновационного звена между проводником и почвой в конструкциях с заземленной нейтралью и рельсовых транспортах, движимых током.

Механизм появления спонтанных разрядов можно рассмотреть на примере одного из приведенных пунктов.

Один конец нулевого провода объединен с ЗУ электрические станции, а другой присоединен к шине PEN потребляющего энергию, обладающей присоединением к ЗУ. Отсюда следует, что разница потенциалов электрического значения между выводами сформировывает блуждающие токи, так как энергия станет передаваться на ЗУ, что со своей стороны сформирует цепь.

В этом случае объем потерь не имеет высокого процента, так как пройдёт по пути самого малого сопротивления, однако конкретная часть попадет в землю.

Точно также происходит утечка энергии и в случае с повреждением изоляции проводки.

При этом неизменная бесперебойная утечка не имеет места, так как о ее появлении сигнализирует система и происходит автоматическая локализация участка, а еще согласно нормативам, есть конкретный временной период, отведенный на удаление поломок.

Важно! Cогласно статистике, центральные места формирования утечки электрической энергии и образования блуждающих токов приходятся на городские и пригородные зоны, где есть наземный транспорт, зависящий от энергосети.

причина

Токи на рельсах

При эксплуатации городского электрифицированного транспорта, подается напряжение из подстанции в тяговую систему, переходящее на рельсы и совершающее обратный цикл. Если рельсы как металлическая база относительно проводника не устойчивы, это ведет к появлению в почве размещений блуждающих токов, тогда каждая металлическая конструкция, появившаяся на их пути, к примеру, изделия сантехнические, выступают в качестве проводника.

Важно! Происходит такое взаимное действие в виду того, что ток двигаясь, подбирает путь наименьшего сопротивления, которое у металла меньше, чем у земли.

Все это приводит к ускоренному разрушению изделий из металлов.

Связь токов и коррозийных процессов

Любой водомерный узел, который находится в почве, повреждается коррозией за счёт влияния на него влаги и солей, но если сюда еще присоединить и активность токов, то появляется электролитический процесс. При этом на скорость электрохимической реакции действует заряд, текущий между анодом и катодом. Отсюда следует, что на активность повреждения металлических изделий будет влиять сопротивление почвы движению зарядов, а еще сложность течений, присутствующих в анодной и катодной зоне.

В этой обстановке система водообеспечения предрасположена обыкновенной коррозии под воздействием токов утечки. Влияние сформировывает гальваническую пару, ускоряющую развитие коррозии. В истории есть большое количество факторов, когда укладываемый трубопровод должен был служить 20 лет, а в действительности разрушение было через 2 года.

Варианты предполагаемой защиты

Чтобы обезопасить металлические изделия от плохого влияния используются разные способы, разделяющиеся по природе их использования на неактивные и энергичные.

Пассивный вариант

Такой вариант считается использованием разного материала для изоляции, формирующего защиту между проводником и металлом. Как изоляция применяется:

  • эпоксидная смоляные смеси;
  • включение в состав полимерных материалов;
  • покрытие из битума.

Однако если обойтись только этим вариантом, то полноценной защиты не выйдет, так как материал для изоляции не считается стопроцентным барьером благодаря наличию диффузионной проницаемости. Благодаря этому изоляция происходит в выборочный способ. По мимо этого в процессе перемещения труб такой слой может быть повреждён, из-за чего появляются существенные царапины, надрезы, сквозные дыры и другие дефекты.

Важно! Благодаря этому применить пассивный способ защиты можно лишь как дополнение.

Энергичная защита

Указывает на использование активных способ локализации источника влияния при помощи использования катодной поляризации, где негативный заряд смещает природный.

Чтобы такую защиту осуществить нужно использование одного из 2-ух инструментов:

  • Гальванического способа – эффект гальванической пары, исполняется разрушение жертвенного анода, обеспечивая таким образом защиту конструкции из металла. Способ энергичен при сопротивляемости грунта до 50 Ом на метр, если сопротивляемость ниже способ не действенен.
  • Источника непрерывного тока – обеспечивает избегание зависимости от силы сопротивляемости грунта. Применяется электрохимическая защита от коррозии, источник которой заключен в сформированном преобразователе, подключенному к электрической цепи электрического тока. Так как источник именно сформировался при помощи его регулирования можно задать нужный уровень защиты тока, в зависимости от сложившихся обстоятельств.
возникновение

Энергичная изоляция

Аналогичный способ может обеспечить и неблагоприятное воздействие:

  • перезащита – превышение нужного потенциала, в конечном итоге происходит разрушение изделия из металла;
  • неправильный расчет защиты – приводящий к ускоренному коррозийному разрушению недалеко от размещенных железных объектов.

Приведенные варианты можно рассмотреть на защите подобного изделия как змеевик.

Процессы которые связаны с коррозией на подобных изделиях или прочих оконечных водопроводных изделиях никогда не происходили, однако это было по настоящему до начала использования металлопластиковой трубы, где есть контакт с алюминием в середине стены. В результате становление блуждающих компонентов происходит не только из-за использования пластмассовых труб в непосредственном помещении, но также и в прочих, так как в доме на несколько квартир они могут быть использованы у соседа с иного этажа.

Важно! Во избежание неблагоприятного воздействия появившихся токов на свою конструкцию нужно поровнять потенциалы, за счёт оснащения сушителя полотенец, батареи и труб водопровода элементом заземления.

При этом применение так нужного заземления происходит в отношении любой коммуникации, которая сделана из труб сделанных из металла, к примеру, газопровода в земля.

Правила выполнения замеров

Чтобы оценить всю степень получившейся ситуации с утечкой электрозарядов нужно сделать ряд мероприятий:

  • измерение напряжения и устремление тока по оболочкам кабелей магистрали;
  • обозначение разности потенциалов между контактными рельсами и находящимися в почве трубопроводами;
  • проверка уровня изоляции рельсов от грунтового покрытия, применив для эксперимента участок полотна;
  • оценка плотности утечки энергии с оболочки кабелей в почву.

Чтобы сделать обмеры, применяется специализированный прибор, если мероприятия проводить на ЖД полотнах следует подбирать час пик движения транспорта.

причина

Инструменты для замеров

Что бы проверить используют преобразователи электрической энергии и подстанции у линии движения – электрод, подключенный к прибору, объединяют с ЗУ и втыкают в 10 метрах от подстанции. Вся появляющаяся разница крепится прибором.

Если предстоит кладка линии труб для водообеспечения важно обнаружить локацию блуждающих токов, для этой цели определяется разница потенциалов между 2-мя выборочными точками поверхности земли, расположенными перпендикулярно друг к другу с соблюдением равного расстояния. Такое обозначение важно исполнять систематично с разрывом в километр.

При этом применяемые приборы непременно должны иметь класс точности не ниже 1,5, а сопротивление оборудования от 1 МОм. Использование измеряющих электродов с разностью потенциалов выше 10 мВ. Время проведения одного замера в первую очередь проходит в границах 10 мин, а разрыв между процессами 10 сек.

Заключение

Вычислением потенциала и определением места локализации блуждающих электрических частиц не пренебрегайте, потому что от этого может зависеть качество работы системы водопровода, по мимо этого необходимо использовать одновременно два варианта защиты, которые урегулируют возникающее напряжение и обеспечивают полную защиту трубопровода.